随着机器学习(ML)技术的快速采用,ML模型的共享变得流行。但是,ML模型容易受到隐私攻击的攻击,这些攻击泄漏了有关培训数据的信息。在这项工作中,我们专注于一种名为属性推理攻击(PIA)的特定类型的隐私攻击,该隐私攻击通过访问目标ML模型来渗透培训数据的敏感属性。特别是,我们将图形神经网络(GNN)视为目标模型,而训练图中特定的节点和链接的分布是目标属性。尽管现有的工作调查了针对图形属性的PIA,但尚无先前的工作研究节点和链接属性在组级别的推断。在这项工作中,我们对针对GNNS的小组财产推理攻击(GPIA)进行了首次系统研究。首先,我们考虑具有不同类型的对手知识的黑盒和白色框设置下的威胁模型的分类法,并为这些设置设计了六种不同的攻击。我们通过对三个代表性的GNN模型和三个现实图表进行广泛的实验来评估这些攻击的有效性。我们的结果证明了这些攻击的有效性,这些攻击的准确性优于基线方法。其次,我们分析了有助于GPIA成功的基本因素,并表明在图形上有或没有目标属性的图形训练的目标模型代表模型参数和/或模型输出的一定程度,这使对手可以推断存在的存在。属性。此外,我们设计了针对GPIA攻击的一组防御机制,并证明这些机制可以有效地降低攻击精度,而GNN模型准确性的损失很小。
translated by 谷歌翻译
强化学习(RL)涉及在未知系统中执行探索性动作。这可以将学习代理放在危险且潜在的灾难性系统中。当前在RL中解决安全学习的方法同时权衡了安全探索和任务实现。在本文中,我们介绍了新一代的RL求解器,这些求解器学会最大程度地减少安全性违规行为,同时在安全政策可以容忍的范围内最大化任务奖励。我们的方法引入了一个新型的两人框架,用于安全RL,称为分配探索安全培训算法(DESTA)。 DESTA的核心是两种自适应代理之间的游戏:安全代理,其任务是最大程度地减少安全违规行为和任务代理,其目标是最大程度地提高环境奖励。具体而言,安全代理可以在任何给定点有选择地控制系统,以防止任务代理在任何其他州自由执行其策略时违反安全性。该框架使安全代理能够学会在培训和测试时间中最大程度地减少未来安全违规行为的某些行动,而任务代理人执行的动作可以最大程度地提高其他任何地方的任务绩效。从理论上讲,我们证明DESTA会汇合到稳定的点,从而最大程度地违反了对预验证的政策的行为。从经验上讲,我们表明了DESTA提高现有政策安全性的能力,其次,当对任务代理和安全代理人同时培训时,构建安全的RL政策。我们展示了DESTA在Lunar Lander和Openai Gym的Frozen Lake中的领先RL方法的出色表现。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译